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2 HARMONIC ANALYSIS

1. Introduction

This lecture note contains a sketch of the lectures. More illustrations
and examples are presented during the lectures.

The tools of the harmonic analysis have a wide spectrum of ap-
plications in mathematical theory. The theory has strong real world
applications at the background as well:

• Signal processing: Fourier transform, Fourier multipliers, Sin-
gular integrals.

• Solving PDEs: Poisson integral, Hilbert transform, Singular
integrals.

• Regularity of PDEs: Hardy-Littlewood maximal function, ap-
proximation by convolution, Calderón-Zygmund decomposition,
BMO.

Example 1.1. We consider a problem

∆u = f in Rn

where f ∈ Lp(Rn). The solution u is of the form

u(x) = C

∫
Rn

f(y)

|x− y|n−2 dy.

One of the questions in the regularity theory of PDEs is, does u have
the second derivatives in Lp i.e.

∂2u

∂xi∂xj

∈ Lp(Rn)?

If we formally differentiate u, we get

∂2u

∂xi∂xj

= C

∫
Rn

f(y)
∂2

∂xi∂xj

1

|x− y|n−2︸ ︷︷ ︸
| · |≤C/|x−y|n

dy.

It follows that
∫
Rn f(y)

∂2

∂xi∂xj

1
|x−y|n−2 dy defines a singular integral Tf(x).

A typical theorem in the theory of singular integrals says

||Tf ||p ≤ C ||f ||p

and thus we can deduce that ∂2u
∂xi∂xj

∈ Lp(Rn).

Example 1.2. Suppose that we have three different signals f1, f2, f3
with different frequencies but only one channel, and that we receive

f = f1 + f2 + f3

from the channel. The Fourier transform F(f) gives us a spectrum of
the signal f with three spikes in |F(f)|. We would like to recover the
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signal f1. Thus we take a multiplier (filter)

a1(y) := χ(a,b)(y) =

{
1, y ∈ (a, b),

0, otherwise,

where the interval (a, b) contains the frequency of f1. Thus formally by
taking the inverse Fourier transform, we get

f1 = F−1(a1F(f)) =: Tf(x).

This, again formally, defines an operator T which turns out to be of
the form

c

∫
R

sin(Cy)

y
f(x− y) dy

with some constants c, C. This operator is of a convolution type. How-
ever, sin(Cy)/y is not integrable over the whole R, so this requires
some care!

2. Hardy-Littlewood maximal function

Definition 2.1. Let f ∈ L1
loc(R

n) and m a Lebesgue measure. A
Hardy-Littlewood maximal function Mf : Rn 7→ [0,∞] is

Mf(x) = sup
Q∋x

1

m(Q)

∫
Q

|f(y)| dy =: sup
Q∋x

∫
Q

|f(y)| dy,

where the supremum is taken over all the cubes Q with sides parallel
to the coordinate axis and that contain the point x. Above we used
the shorthand notation∫

Q

f(x) dx =
1

m(Q)

∫
Q

f(x) dx

for the integral average.

Notation 2.2. We denote an open cube by

Q = Q(x, l) = {y ∈ Rn : max
1≤i≤n

|yi − xi| < l/2},

l(Q) is a side length of the cube Q,

m(Q) = l(Q)n,

diam(Q) = l(Q)
√
n.

Example 2.3. f : R → R, f(x) = χ(0,1)(x)

Mf(x) =


1
x
, x > 1,

1, 0 ≤ x ≤ 1,
1

1−x
, x < 0.

Observe that f ∈ L1(R) but Mf /∈ L1(R).
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Remark 2.4. (i) Mf is defined at every point x ∈ Rn and if f = g
almost everywhere (a.e.), then Mf(x) = Mg(x) at every x ∈ Rn.

(ii) It may well be that Mf = ∞ for every x ∈ Rn. Let for example
n = 1 and f(x) = x2.

(iii) There are several definitions in the literature which are often
equivalent. Let

M̃f(x) = sup
l>0

∫
Q(x,l)

|f(y)| dy,

where the supremum is taken over all cubes Q(x, l) centered at x.
Then clearly

M̃f(x) ≤ Mf(x)

for all x ∈ Rn. On the other hand, if Q is a cube such that x ∈ Q,
then Q = Q(x0, l0) ⊂ Q(x, 2l0) and∫

Q

|f(x)| dy ≤ m(Q(x, 2l0))

m(Q(x, l0))

1

m(Q(x, 2l0))

∫
Q(x,2l0)

|f(y)| dy

≤ 2nM̃f(x)

because
m(Q(x, 2l0))

m(Q(x, l0))
=

(2l0)
n

ln0
= 2n.

It follows that Mf(x) ≤ 2nM̃f(x) and

M̃f(x) ≤ Mf(x) ≤ 2nM̃f(x)

for every x ∈ Rn. We obtain a similar result, if cubes are replaced
for example with balls.

Next we state some immediate properties of the maximal function.
The proofs are left for the reader.

Lemma 2.5. Let f, g ∈ L1
loc(R

n). Then

(i)
Mf(x) ≥ 0 for all x ∈ Rn (positivity).

(ii)
M(f + g)(x) ≤ Mf(x) +Mg(x) (sublinearity)

(iii)
M(αf)(x) = |α|Mf(x), α ∈ R (homogeneity).

(iv)

M(τyf) = (τyMf)(x) = Mf(x+ y) (translation invariance).

Lemma 2.6. If f ∈ C(Rn), then

|f(x)| ≤ Mf(x)

for all x ∈ Rn.
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Proof. Let f ∈ C(Rn), x ∈ Rn. Then

∀ε > 0 ∃δ > 0 s.t. |f(x)− f(y)| < ε whenever |x− y| < δ.

From this and the triangle inequality, it follows that∣∣∣∣∫
Q

|f(x)| dy − |f(x)|
∣∣∣∣ ∫

Q 1 dy = 1
=

∣∣∣∣∫
Q

(
|f(y)| − |f(x)|

)
dy

∣∣∣∣
≤

∫
Q

||f(y)| − |f(x)|| dy ≤
∫
Q

|f(y)− f(x)| dy < ε

whenever diam(Q) =
√
n l(Q) < δ. Thus

|f(x)| = lim
Q∋x,l(Q)→0

∫
Q

|f(x)| dy ≤ sup
Q∋x

∫
Q

|f(x)| dy = Mf(x). �

Remember that f : Rn → [−∞,∞] is lower semicontinuous if

{x ∈ Rn : f(x) > λ} = f−1((λ,∞])

is open for all λ ∈ R. Thus for example, χU is lower semicontinuous
whenever U ⊂ Rn is open. It also follows that if f is lower semicontin-
uous then it is measurable.

Lemma 2.7. Mf is lower semicontinuous and thus measurable.

Proof. We denote

Eλ = {x ∈ Rn : Mf(x) > λ}, λ > 0.

Whenever x ∈ Eλ it follows that there exists Q ∋ x such that∫
Q

|f(y)| dy > λ.

Further

Mf(z) ≥
∫
Q

|f(y)| dy > λ

for every z ∈ Q, and thus

Q ⊂ Eλ. �

Lemma 2.8. If f ∈ L∞(Rn), then Mf ∈ L∞(Rn) and

||Mf ||∞ ≤ ||f ||∞ .

Proof. ∫
Q(x)

|f(y)| dy ≤ ||f ||∞
∫
Q

1 dx = ||f ||∞ ,

for every x ∈ Rn. From this it follows that

||Mf ||∞ ≤ ||f ||∞ . �
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Lemma 2.9. Let E be a measurable set. Then for each 0 < p < ∞,
we have∫

E

|f(x)|p dx = p

∫ ∞

0

λp−1m({x ∈ E : |f(x)| > λ}) dλ

Proof. Sketch:∫
E

|f(x)|p dx =

∫
Rn

χE(x)p

∫ |f(x)|

0

λp−1 dλ dx

Fubini
= p

∫ ∞

0

λp−1

∫
Rn

χ{x∈E : |f(x)|>λ}(x) dx dλ

= p

∫ ∞

0

λp−1m({x ∈ E : |f(x)| > λ}) dλ. �

Definition 2.10. Let f : Rn → [−∞,∞] be measurable. The function
f belongs to weak L1(Rn) if there exists a constant C such that 0 ≤
C < ∞ such that

m({x ∈ Rn : |f(x)| > λ}) ≤ C

λ

for all λ > 0.
7.9.2010

Remark 2.11. (i) L1(Rn) ⊂ weak L1(Rn) because

m({x ∈ Rn : |f(x)| > λ}) =
∫
{x∈Rn : |f(x)|>λ}

1 dx

≤
∫
{x∈Rn : |f(x)|>λ}

|f(x)|
λ︸ ︷︷ ︸
≥1

dx ≤ ||f ||1
λ

,

for every λ > 0.
(ii) weak L1(Rn) is not included into L1(Rn). This can be seen by

considering

f : Rn → [0,∞], f(x) = |x|−n .

Indeed,∫
B(0,1)

|f(x)| dx =

∫
B(0,1)

|x|−n dx =

∫ 1

0

∫
∂B(0,r)

r−n dS(x) dr

=

∫ 1

0

r−n

∫
∂B(0,r)

1 dS(x)︸ ︷︷ ︸
ωn−1rn−1

dr

= ωn−1

∫ 1

0

1

r
dr = ∞,
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that is ||f ||1 = ∞ and thus f /∈ L1(Rn). On the other hand for
every λ > 0

m({x ∈ Rn : |f(x)| > λ}) = m(B(0, λ−1/n)) =
Ωn

λ

where Ωn is a measure of a unit ball. Hence f ∈ weak L1(Rn).

Theorem 2.12 (Hardy-Littlewood I). If f ∈ L1(Rn), then Mf is in
weak L1(Rn) and

m({x ∈ Rn : Mf(x) > λ}) ≤ 5n

λ
||f ||1

for every 0 < λ < ∞.

In other words, the maximal functions maps L1 to weak L1.
The proof of this theorem uses the Vitali covering theorem.

Theorem 2.13 (Vitali covering). Let F be a family of cubes Q s.t.

diam(
∪
Q∈F

Q) < ∞.

Then there exist a countable number of disjoint cubes Qi ∈ F , i =
1, 2, . . . s.t. ∪

Q∈F

Q ⊂
∞∪
i=1

5Qi

Here 5Qi is a cube with the same center as Qi whose side length is
multiplied by 5.

Proof. The idea is to choose cubes inductively at round i by first throw-
ing away the ones intersecting the cubes Q1, . . . , Qi−1 chosen at the
earlier rounds and then choosing the largest of the remaining cubes
not yet chosen. Because the largest cube was chosen at every round,
it follows that ∪i−1

j=15Qj will cover the cubes thrown away. However,
implementing this intuitive idea requires some care because there can
be infinitely many cubes in the family F . In particular, it may not be
possible to choose largest one, but we choose almost the largest one.

To work out the details, suppose that Q1, . . . , Qi−1 ∈ F are chosen.
Define

li = sup{l(Q) : Q ∈ F and Q ∩
i−1∪
j=1

Qj = ∅}. (2.14)

Observe first that li < ∞, due to diam(
∪

Q∈F Q) < ∞. If there is no a
cube Q ∈ F such that

Q ∩
i−1∪
j=1

Qj = ∅,
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then the process will end and we have found the cubes Q1, . . . , Qi−1.
Otherwise we choose Qi ∈ F such that

l(Qi) >
1

2
li and Qi ∩

i−1∪
j=1

Qj = ∅.

This is also how we choose the first cube. Observe further that this is
possible since 0 < li < ∞. We have chosen the cubes so that they are
disjoint and it suffices to show the covering property.

Choose an arbitrary Q ∈ F . Then it follows that this Q intersects
at least one of the chosen cubes Q1, Q2, . . ., because otherwise

Q ∩Qi = ∅ for every i = 1, 2, . . .

and thus the sup in (2.14) must be at least l(Q) so that

li ≥ l(Q) for every i = 1, 2, . . . .

It follows that

l(Qi) >
1

2
li ≥

1

2
l(Q) > 0

for every i = 1, 2, . . ., so that

m(
∞∪
i

Qi) =
∞∑
i=1

m(Qi) = ∞,

where we also used the fact that the cubes are disjoint. This contradicts
the fact that m(

∪∞
i Qi) < ∞ since

∪∞
i Qi is a bounded set according

to assumption diam(
∪

Q∈F Q) < ∞. Thus we have shown that Q in-
tersects a cube in Qi, i = 1, 2, . . .. Then there exists a smallest index i
so that

Q ∩Qi ̸= ∅.

implying

Q ∩
i−1∪
j=1

Qj = ∅.

Furthermore, according to the procedure

l(Q) ≤ li < 2l(Qi)

and thus Q ⊂ 5Qi and moreover∪
Q∈F

Q ⊂
∞∪
i=1

5Qi. �
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Proof of Theorem 2.12. Remember the notation

Eλ = {x ∈ Rn : Mf(x) > λ}, λ > 0

so that x ∈ Eλ implies that there exits a cube Qx ∋ x such that∫
Qx

|f(y)| dy > λ (2.15)

If Qx would cover Eλ, then the result would follow by the estimate

m(Eλ) ≤ m(Q) ≤
∫
Rn

|f(y)|
λ

dy.

However, this is not usually the case so we have to cover Eλ with cubes.
But then the overlap of cubes needs to be controlled, and here we utilize
the Vitali covering theorem.

In application of the Vitali covering theorem, there is also a technical
difficulty that Eλ may not be bounded. This problem is treated by
looking at the

Eλ ∩B(0, k).

Let F be a collection of cubes with the property (2.15), and x ∈ Eλ ∩
B(0, k). Now for every Q ∈ F it holds that

l(Q)n = m(Q) <
1

λ

∫
Q

|f(y)| dy ≤ ||f ||1
λ

,

so that

l(Q) ≤
( ||f ||1

λ

)1/n

< ∞.

Thus diam(
∪

Q∈F Q) < ∞ and the Vitali covering theorem implies∪
Q∈F

Q ⊂
∞∪
i=1

5Qi.

Combining the facts, we have

m(Eλ ∩B(0, k)) ≤ m(
∞∪

Q∈F

Q) ≤
∞∑
i=1

m(5Qi) = 5n
∞∑
i=1

m(Qi)

(2.15)

≤ 5n

λ

∞∑
i=1

∫
Qi

|f(y)| dy

cubes are disjoint
=

5n

λ

∫
∪∞
i=1Qi

|f(y)| dy ≤ 5n

λ
||f ||1 .

Then we pass to the original Eλ

m(Eλ) = lim
k→∞

m(Eλ ∩B(0, k)) ≤ 5n

λ
||f ||1 . �
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Remark 2.16. Observe that f ∈ L1(Rn) implies that Mf(x) < ∞
a.e. x ∈ Rn because

m({x ∈ Rn : Mf(x) = ∞} ≤ m({x ∈ Rn : Mf(x) > λ})

≤ 5n

λ
||f ||1 → 0

as λ → ∞.

Definition 2.17. (i)

f ∈ L1(Rn) + Lp(Rn), 1 ≤ p ≤ ∞
if

f = g + h, g ∈ L1(Rn), h ∈ Lp(Rn)

(ii)

T : L1(Rn) + Lp(Rn) → measurable functions

is subadditive, if

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)| a.e. x ∈ Rn

(iii) T is of strong type (p, p), 1 ≤ p ≤ ∞, if there exists a constant C
independent of functions f ∈ Lp(Rn) s.t.

||Tf ||p ≤ C ||f ||p .

for every f ∈ Lp(Rn)
(iv) T is of weak type (p, p), 1 ≤ p < ∞, if there exists a constant C

independent of functions f ∈ Lp(Rn) s.t.

m({x ∈ Rn : Tf(x) > λ}) ≤ C

λp
||f ||pp

for every f ∈ Lp(Rn).

Remark 2.18. (i) Observe that the maximal operator is subaddi-
tive, of weak type (1,1) that is

m({x ∈ Rn : Mf(x) > λ}) ≤ 5n

λ
||f ||1 ,

of strong type (∞,∞)

||Mf ||∞ ≤ C ||f ||∞ ,

and nonlinear.
(ii) Strong (p, p) implies weak (p, p):

m({x ∈ Rn : Tf(x) > λ})
Chebysev

≤ 1

λp

∫
Rn

|Tf |p dx

strong (p, p)

≤ C

λp

∫
Rn

|f |p dx.
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Theorem 2.19 (Hardy-Littlewood II). If f ∈ Lp(Rn), 1 < p ≤ ∞,
then Mf ∈ Lp(Rn) and there exists C = C(n, p) (meaning C depends
on n, p) such that

||Mf ||p ≤ C ||f ||p .

This is not true, when p = 1, cf. Example 2.3. The proof is based
on the interpolation (Marcinkiewicz interpolation theorem, proven be-
low) between weak (1, 1) and strong (∞,∞). In the proof of the
Marcinkiewicz interpolation theorem, we use the following auxiliary
lemma. 9.9.2010

Lemma 2.20. Let 1 ≤ p ≤ q ≤ ∞. Then

Lp(Rn) ⊂ L1(Rn) + Lq(Rn).

Proof. Let f ∈ Lp(Rn), λ > 0. We split f into two part as f = f1 + f2
by setting

f1(x) = fχ{x∈Rn : |f(x)|≤λ}(x) =

{
f(x), |f(x)| ≤ λ

0, |f(x)| > λ,

f2(x) = fχ{x∈Rn : |f(x)|>λ}(x) =

{
f(x), |f(x)| > λ

0, |f(x)| ≤ λ.

We will show that f1 ∈ Lq and f2 ∈ L1∫
Rn

|f1(x)|q dx =

∫
Rn

|f1(x)|q−p |f1(x)|p dx

|f1|≤λ

≤ λq−p

∫
Rn

|f1(x)|p dx

|f1|≤|f |
≤ λq−p ||f ||pp < ∞,∫

Rn

|f2(x)| dx =

∫
Rn

|f2|1−p |f2|p dx

|f2|>λ or f2=0

≤ λ1−p

∫
Rn

|f2|p dx

|f2|≤|f |
≤ λ1−p ||f ||pp < ∞. �

Theorem 2.21 (Marcinkiewicz interpolation theorem). Let 1 < q ≤
∞,

T : L1(Rn) + Lq(Rn) → measurable functions

is subadditive, and

(i) T is of weak type (1, 1)
(ii) T is of weak type (q, q), if q < ∞, and

T is of strong type (q, q), if q = ∞.
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Then T is of strong type (p, p) for every 1 < p < q that is

||Tf ||p ≤ C ||f ||p

for every f ∈ Lp(Rn).

Proof. Case q < ∞. Let f = f1 + f2 where as before

f1 = fχ{|f |≤λ} and f2 = fχ{|f |>λ}

and recall that f1 ∈ Lq and f2 ∈ L1. Subadditivity implies

|Tf | ≤ |Tf1|+ |Tf2|

for a.e. x ∈ Rn. Thus

m({x ∈ Rn : |Tf(x)| > λ}) ≤ m({x ∈ Rn : |Tf1(x)| > λ/2})
+m({x ∈ Rn : |Tf2(x)| > λ/2})

≤
( C1

λ/2
||f1||q

)q

+
C2

λ/2
||f2||1

≤ (2C1)
q

λq

∫
{x∈Rn : |f(x)|≤λ}

|f(x)|q dx

+
2C2

λ

∫
{x∈Rn : |f(x)|>λ}

|f(x)| dx.

Then by Lemma 2.9, it follows that∫
Rn

|Tf |p dx = p

∫ ∞

0

λp−1m({x ∈ Rn : |Tf(x)| > λ) dλ

≤ (2C1)
qp

∫ ∞

0

λp−q−1

∫
{x∈Rn : |f(x)|≤λ}

|f(x)|q dx dλ

+ 2pC2

∫ ∞

0

λp−2

∫
{x∈Rn : |f(x)|>λ}

|f(x)| dx dλ.

Further by Fubini’s theorem∫ ∞

0

λp−q−1

∫
{x∈Rn : |f(x)|≤λ}

|f(x)|q dx dλ =

∫
Rn

|f(x)|q
∫ ∞

|f(x)|
λp−q−1 dλ dx

=
1

q − p

∫
Rn

|f(x)|q |f(x)|p−q dx

=
1

q − p

∫
Rn

|f(x)|p dx
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and∫ ∞

0

λp−2

∫
{x∈Rn : |f(x)|>λ}

|f(x)| dx dλ =

∫
Rn

|f(x)|
∫ |f(x)|

0

λp−2 dλ dx

=
1

p− 1

∫
Rn

|f(x)|p−1 |f(x)| dx

=
1

p− 1

∫
Rn

|f(x)|p dx.

Thus we arrive at

||Tf ||pp ≤ p
( 2C2

p− 1
+

(2C1)
q

q − p

)
||f ||pp .

Case q = ∞. Suppose that

||Tg||∞ ≤ C2 ||g||∞

for every g ∈ L∞(Rn). We again split f ∈ Lp(Rn) as f = f1+f2 where

f1 = fχ{|f |≤λ/(2C2)} and f2 = fχ{|f |>λ/(2C2)}

and by Lemma 2.20, f1 ∈ L∞ and f2 ∈ L1. We have a.e.

|Tf1(x)| ≤ ||Tf1||∞ ≤ C2 ||f1||∞ ≤ C2
λ

2C2

=
λ

2
.

Thus

m({x ∈ Rn : |Tf(x)| > λ}) ≤ m({x ∈ Rn : |Tf1(x)| > λ/2})︸ ︷︷ ︸
=0

+m({x ∈ Rn : |Tf2(x)| > λ/2}).

It follows that

m({x ∈ Rn : |Tf(x)| > λ}) ≤ m({x ∈ Rn : |Tf2(x)| > λ/2})
weak (1, 1)

≤ C1

λ/2

∫
Rn

|f2(x)| dx

=
2C1

λ

∫
{x∈Rn : |f(x)|>λ/(2C2)}

|f(x)| dx.

Then by using Lemma 2.9 again, we see that∫
Rn

|Tf(x)|p dx = p

∫ ∞

0

λp−1m({x ∈ Rn : |Tf(x)| > λ}) dλ

≤ 2C1p

∫ ∞

0

λp−2

∫
{x∈Rn : |f(x)|>λ/(2C2)}

|f(x)| dx dλ

Fubini
= 2pCp−1

2 C1
p

p− 1

∫
Rn

|f(x)|p dx. �
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Example 2.22 (Proof of the Sobolev’s inequality via the maximal
function). Suppose that u ∈ C∞

0 (Rn). We immediately have

u(x) = −
∫ ∞

0

∂

∂r
u(x+ rω) dr,

where ω ∈ ∂B(0, 1). Integrating this over the whole unit sphere

ωn−1u(x) =

∫
∂B(0,1)

u(x) dS(ω)

= −
∫
∂B(0,1)

∫ ∞

0

∂

∂r
u(x+ rω) dr dS(ω)

= −
∫
∂B(0,1)

∫ ∞

0

∇u(x+ rω) · ω dr dS(ω)

= −
∫ ∞

0

∫
∂B(0,1)

∇u(x+ rω) · ω dS(ω) dr

and changing variables so that y = x + rω, dS(y) = rn−1 dS(ω), ω =
(y − x)/ |y − x| , r = |y − x| we get

ωn−1u(x) = −
∫ ∞

0

∫
∂B(0,r)

∇u(y) · y − x

|y − x|n
dS(y) dr

so that

u(x) = − 1

ωn−1

∫
Rn

∇u(y) · (x− y)

|x− y|n
dy.

Further

|u(x)| ≤ 1

ωn−1

∫
Rn

|∇u(y)|
|x− y|n−1 dy

which is so called Riesz potential. We split this into a bad part and a
good part as

∫
Rn =

∫
B(x,r)

+
∫
Rn\B(x,r)

. By estimating the bad part over

the sets B(x, 2−ir) \B(x, 2−i−1r) as∫
B(x,r)

|∇u(y)|
|x− y|n−1 dy =

∞∑
i=0

∫
B(x,2−ir)\B(x,2−i−1r)

|∇u(y)|
|x− y|n−1 dy

≤
∞∑
i=0

∫
B(x,2−ir)\B(x,2−i−1r)

|∇u(y)|
(2−i−1r)n−1

dy

≤
∞∑
i=0

2−ir

2−ir

∫
B(x,2−ir)

2n−1 |∇u(y)|
(2−ir)n−1

dy

≤ C
∞∑
i=0

2n−12−ir

∫
B(x,2−ir)

|∇u(y)| dy

≤ C2n−1rM |∇u| (x)
∞∑
i=0

2−i
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we get ∫
B(x,r)

|∇u(y)|
|x− y|n−1 dy ≤ CrM |∇u| (x). (2.23)

On the other hand, for the good part we use Hölder’s inequality with
the powers p and p/(p− 1) , where p < n, as∫

Rn\B(x,r)

|∇u(y)|
|x− y|n−1 dy

≤
(∫

Rn\B(x,r)

|∇u(y)|p dy
)1/p(∫

Rn\B(x,r)

|x− y|(1−n)p/(p−1) dy
)(p−1)/p

.

Then we calculate(∫
Rn\B(x,r)

|x− y|(1−n)p/(p−1) dy
)(p−1)/p

=
(∫ ∞

r

ωn−1ρ
n−1ρ(1−n)p/(p−1) dρ

)(p−1)/p

=
(
ωn−1

∫ ∞

r

ρ(1−n)/(p−1) dρ
)(p−1)/p

=
(
ωn−1

∫ ∞

r

ρ−1+(p−n)/(p−1) dρ
)(p−1)/p

.

Combining the previous calculations, we get 14.9.2010∫
Rn\B(x,r)

|∇u(y)|
|x− y|n−1 dy ≤ C ||∇u||p r

1−n
p , (2.24)

with p < n. Choosing r =
(
||∇u||p /(M |∇u| (x))

)p/n

as well as com-

bining the estimates (2.23) and (2.24), we get

|u(x)| ≤ C

∫
Rn

|∇u(y)|
|x− y|n−1 dy

≤ C ||∇u||p/np M |∇u| (x)(n−p)/n.

Then we take the power1 np/(n− p) on both sides and end up with

|u(x)|np/(n−p) ≤ C ||∇u||p
2/(n−p)

p M |∇u| (x)p.
By recalling Hardy-Littlewood II, we obtain∫

Rn

|u(x)|np/(n−p) dx ≤ C ||∇u||p
2/(n−p)

p

∫
Rn

M |∇u| (x)p dx

≤ C ||∇u||p
2/(n−p)

p ||∇u||pp ≤ C ||∇u||np/(n−p)
p .

This is so called Sobolev’s inequality(∫
Rn

|u(x)|p
∗
dx

)1/p∗

≤ C
(∫

Rn

|∇u(x)|p dx
)1/p

,

which holds for every u ∈ C∞
0 (Rn) and p < n.

1This is sometimes denoted by p∗ = np/(n− p) and called a Sobolev conjugate.
It satisfies 1/p− 1/p∗ = 1/n.
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3. Approximation by convolution

Definition 3.1 (Convolution). Suppose that f, g : Rn → [−∞,∞] are
Lebesgue-measurable functions. The convolution

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y) dy

is defined if y 7→ f(y)g(x− y) is integrable for almost every x ∈ Rn.

Observe that: f, g ∈ L1(Rn) does not imply fg ∈ L1(Rn) which can

be seen by considering for example f = g =
χ(0,1)(x)√

x
.

Theorem 3.2 (Minkowski’s/Young’s inequality). If f ∈ Lp(Rn), 1 ≤
p ≤ ∞ and g ∈ L1(Rn), then (f ∗ g)(x) exists for almost all x ∈ Rn

and

||f ∗ g||p ≤ ||f ||p ||g||1 .

Proof. Case p = 1: Because

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)| |g(x− y)| dy

we have∫
Rn

|(f ∗ g)(x)| dx ≤
∫
Rn

∫
Rn

|f(y)| |g(x− y)| dy dx

Fubini
=

∫
Rn

|f(y)|
(∫

Rn

|g(x− y)| dx
)
dy

=

∫
Rn

|f(y)| dy
∫
Rn

|g(x)| dx

= ||f ||1 ||g||1 .

Case p = ∞:

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)| |g(x− y)| dy

≤ ess sup
y∈Rn

|f(x)|
∫
Rn

|g(x− y)| dy

= ||f ||∞ ||g||1 .

Case 1 < p < ∞: Set

1

p
+

1

p′
= 1.
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Then

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)| |g(x− y)| dy

=

∫
Rn

|f(y)| |g(x− y)|1/p |g(x− y)|1/p
′
dy

Hölder

≤
(∫

Rn

|f(y)|p |g(x− y)| dy
)1/p(∫

Rn

|g(x− y)| dy
)1/p′

=
(∫

Rn

|f(y)|p |g(x− y)| dy
)1/p

||g||1/p
′

1 .

Thus∫
Rn

|(f ∗ g)(x)|p dx ≤ ||g||p/p
′

1

∫
Rn

∫
Rn

|f(y)|p |g(x− y)| dy dx

Fubini
= ||g||p/p

′

1

∫
Rn

|f(y)|p
∫
Rn

|g(x− y)| dx dy

= ||g||p/p
′

1 ||g||1 ||f ||
p
p = ||g||p1 ||f ||

p
p ,

because

p

p′
+ 1 = p(

1

p′
+

1

p
) = p. �

We state the following simple properties of convolution without a
proof.

Lemma 3.3 (Basic properties of convolution). Let f, g, h ∈ L1(Rn).
Then

(i) f ∗ g = g ∗ f .
(ii) f ∗ (g ∗ h) = (f ∗ g) ∗ h.
(iii) (αf + βg) ∗ h = α(f ∗ h) + β(g ∗ h), α, β ∈ Rn.

For ϕ ∈ L1(Rn), ε > 0, we denote

ϕε(x) =
1

εn
ϕ(

x

ε
), x ∈ Rn. (3.4)

Example 3.5. (i) Let ϕ(x) =
χB(0,1)(x)

m(B(0,1))
. Then

ϕε(x) =
1

εn
χB(0,1)(

x
ε
)

m(B(0, 1))
=

χB(0,ε)(x)

m(B(0, ε))
.

Then for f ∈ L1(Rn), a mollification

(f ∗ ϕε)(x) =

∫
Rn

f(y)ϕε(x− y) dy

=

∫
B(x,ε)

f(y) dy.
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turns out to be useful. Observe also that ||ϕε||1 = 1 for any ε > 0
so that

||f ∗ ϕε||1 ≤ ||f ||1 ||ϕε||1 = ||f ||1 .

(ii)

φ =

{
exp

(
1

|x|2−1

)
, x ∈ B(0, 1)

0, else.

It holds that φ ∈ C∞
0 (Rn) and thus also φ ∈ L1(Rn). Let

ϕ =
φ

||φ||1
.

Then ϕε ∈ C∞
0 (Rn), spt(ϕε) ⊂ B(0, ε), and∫

Rn

ϕε(x) dx =
1

εn

∫
Rn

ϕ(x/ε) dx

y=x
ε
, dx=εn dy
=

1

εn

∫
Rn

ϕ(y)εn dy

=

∫
Rn

ϕ(y) dy

=

∫
Rn

φ(y)

||φ||1
dy =

||φ||1
||φ||1

= 1,

for all ε > 0. The function ϕε is called a standard mollifier in
this case. As before, if f ∈ L1(Rn), then

||f ∗ ϕε||1 ≤ ||f ||1 .

Lemma 3.6. Let ϕ ∈ L1(Rn) and recall that ϕε(x) =
1
εn
ϕ(x

ε
). Then

(i) ∫
Rn

ϕε(x) dx =

∫
Rn

ϕ(x) dx

for every ε > 0.
(ii)

lim
ε→0

∫
Rn\B(0,r)

|ϕε(x)| dx = 0

for every r > 0.

Proof. (i) Change of variables, see above.
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(ii) We calculate∫
Rn\B(0,r)

|ϕε(x)| dx =
1

εn

∫
Rn\B(0,r)

|ϕ(x/ε)| dx

y=x
ε
, dx=εn dy
=

∫
Rn\B(0,r/ε)

ϕ(y) dy

=

∫
Rn

ϕ(y)χRn\B(0,r/ε) dy → 0

as ε → 0 by Lebesgue’s dominated convergence theorem. �

Theorem 3.7. Let ϕ ∈ L1(Rn),

a =

∫
Rn

ϕ(x) dx

and f ∈ Lp(Rn), 1 ≤ p < ∞. Then

||ϕε ∗ f − af ||p → 0

as ε → 0.

Notice that the statement is invalid if p = ∞.

Proof. We will work out the details below, but the idea in the proof is
that by using the definition of the convolution together with Hölder’s
inequality and Fubini’s theorem, we obtain∫

Rn

|(f ∗ ϕε)(x)− af(x)|p dx

≤ ||ϕ||p/p
′

1

∫
Rn

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

= ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

+ ||ϕ||p/p
′

1

∫
Rn\B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

= I1 + I2,
(3.8)

where 1/p+1/p′ = 1. The first term on the right hand side, I1, is small
when r is small because intuitively then f(x−y) only differs little from
f(x). On the other hand, the second integral, I2, is small for small
enough ε > 0 for any r because ϕε gets more and more concentrated. 16.9.2010

Next we work out the details. By the previous lemma

af(x) = f(x)

∫
Rn

ϕ(y) dy =

∫
Rn

f(x)ϕε(y) dy.
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Thus∫
Rn

|(f ∗ ϕε)(x)− af(x)|p dx

=

∫
Rn

∣∣∣∣∫
Rn

(f(x− y)− f(x))ϕε(y) dy

∣∣∣∣p dx

≤
∫
Rn

(∫
Rn

|f(x− y)− f(x)| |ϕε(y)|1/p |ϕε(y)|1/p
′
dy

)p

dx

Hölder

≤
∫
Rn

∫
Rn

|(f(x− y)− f(x))|p |ϕε(y)| dy
(∫

Rn

|ϕε(y)| dy
)p/p′

dx

Fubini
= ||ϕ||p/p

′

1

∫
Rn

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy.

This confirms (3.8), and we start estimating I2 and I1.
Fix η > 0. First we estimate I1. By a well-known result in Lp-

theory, C0(R
n) (compactly supported continuous functions) are dense

in Lp(Rn) meaning that we can choose g ∈ C0(R
n) such that∫

Rn

|f(x)− g(x)|p dx < η.

Moreover, as g is uniformly continuous because it is compactly sup-
ported, so that we can choose small enough r > 0 to have∫

Rn

|g(x− y)− g(x)|p dx < η,

for any y ∈ B(0, r). Also recall that by convexity of xp, p > 1 for
some a, b ∈ R we have |a+ b|p ≤ (|a| + |b|)p = (1

2
2 |a| + 1

2
2 |b|)p ≤

1
2
(2 |a|)p + 1

2
(2 |b|)p = 2p−1 |a|p + 2p−1 |b|p. By using these tools, and by

adding and subtracting g, we can estimate∫
Rn

|f(x− y)− f(x)|p dx

≤
∫
Rn

|f(x− y)− g(x− y) + g(x− y)− g(x) + g(x)− f(x)|p dx

convexity

≤ C

∫
Rn

|f(x− y)− g(x− y)|p dx

+ C

∫
Rn

|g(x− y)− g(x)|p dx+ C

∫
Rn

|g(x)− f(x)|p dx ≤ 3η

for any y ∈ B(0, r). Thus

I1 = ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

≤ ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)| 3η dy ≤ Cη.
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Next we estimate I2. By the previous lemma (Lemma 3.6 (ii)), for
any r > 0, there exists ε′ > 0 such that∫

Rn\B(0,r)

|ϕε(y)| dy < η,

for every 0 < ε < ε′. Thus since∫
Rn

|f(x− y)− f(x)|p dx ≤2p−1

∫
Rn

|f(x− y)|p dx

+ 2p−1

∫
Rn

|f(x)|p dx < ∞

for f ∈ Lp, we see that

I2 = ||ϕ||p/p
′

1

∫
Rn\B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

≤ C

∫
Rn\B(0,r)

|ϕε(y)| dy < Cη,

where C = ||ϕ||p/p
′

1 2p ||f ||pp. Thus for any η > 0 we get an estimate∫
Rn

|(f ∗ ϕε)(x)− af(x)|p dx ≤ I1 + I2 ≤ Cη

with C independent of η, by first choosing small enough r so that I1 is
small, and then for this fixed r > 0 by choosing ε small enough so that
I2 is small. �

Remark 3.9. Similarly, we can prove that for ϕ ∈ L1(Rn) and a =∫
Rn ϕ dx, we have

(i) If f ∈ C(Rn) ∩ L∞(Rn), then

f ∗ ϕε → af

as ε → 0 uniformly on compact subsets of Rn.
(ii) If f ∈ L∞(Rn) is in addition uniformly continuous, then f ∗ ϕε

converges uniformly to af in the whole of Rn, that is,

||f ∗ ϕε − af ||∞ → 0

as ε → 0.

Theorem 3.10. Let ϕ ∈ L1(Rn) be such that

(i) ϕ(x) ≥ 0 a.e. x ∈ Rn.

(ii) ϕ is radial, i.e. ϕ(x) = ϕ̃(|x|)
(iii) ϕ is radially decreasing, i.e.,

|x| > |y| ⇒ ϕ(x) ≤ ϕ(y).
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Then there exists C = C(n, ϕ) such that

sup
ε

|((f ∗ ϕε)(x)| ≤ CMf(x)

for all x ∈ Rn and f ∈ Lp, 1 ≤ p ≤ ∞.

Proof. First we will show by a direct computation utilizing the defini-
tion of convolution, that this holds for radial functions with relatively
simple structure. Then we obtain the general case by approximation
argument. To this end, let us first assume that ϕ is a radial function
of the form

ϕ(x) =
k∑

i=1

aiχB(0,ri), ai > 0.

Then ∫
Rn

ϕ(x) dx =
k∑

i=1

aim(B(0, ri))

Thus we can calculate

|(f ∗ ϕε)(x)| =
∣∣∣∣∫

Rn

f(x− y)ϕε(y) dy

∣∣∣∣
=

∣∣∣∣ 1εn
∫
Rn

f(x− y)ϕ(
y

ε
) dy

∣∣∣∣
z=y/ε, dy=εn dz

=

∣∣∣∣∫
Rn

f(x− εz)ϕ(z) dz

∣∣∣∣
=

∣∣∣∣∣
k∑

i=1

∫
B(0,ri)

f(x− εz)ai dz

∣∣∣∣∣
≤

k∑
i=1

ai

∫
B(0,ri)

|f(x− εz)| dz

=
k∑

i=1

aim(B(0, ri))

∫
B(0,ri)

|f(x− εz)| dz.

By a change of variables y = x − εz, z = (x − y)/ε, dz = dy/εn we
see that∫
B(0,ri)

|f(x− εz)| dz =
1

εnm(B(0, ri))

∫
B(x,εri)

|f(y)| dy

=
1

m(B(0, εri))

∫
B(x,εri)

|f(y)| dy

≤ m(Q(x, 2εri))

m(B(0, εri))

1

m(Q(x, 2εri))

∫
Q(x,2εri)

|f(y)| dy

≤ C(n)Mf(x).
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Combining the facts, we get

|(f ∗ ϕε)(x)| ≤
k∑

i=1

aim(B(0, ri))C(n)Mf(x)

= C(n) ||ϕ||1Mf(x).

Next we go to the general case. As ϕ is nonnegative, radial, and
radially decreasing, there exists a sequence ϕj, j = 1, 2, . . . of function
as above such that ϕ1 ≤ ϕ2 ≤ . . . and

ϕj(x) → ϕ(x) a.e. x ∈ Rn,

as j → ∞. Now

|(f ∗ ϕε)(x)| ≤
∫
Rn

|f(x− y)|ϕε(x) dx

=

∫
Rn

|f(x− y)| lim
j→∞

(ϕj)ε(y) dy

MON
= lim

j→∞

∫
Rn

|f(x− y)| (ϕj)ε(y) dy

≤ C(n) lim
j→∞

||ϕj||1Mf(x)

MON
= C(n) ||ϕ||1Mf(x)

for every x ∈ Rn. In the calculation above, MON stands for the
Lebesgue monotone convergence theorem. �

Remark 3.11. If ϕ is not radial or nonnegative, then we can use radial
majorant

ϕ̃(x) = sup
|y|≥|x|

|ϕ(y)|

which is nonnegative, radial and radially decreasing. Thus if ϕ̃ ∈
L1(Rn), then the previous theorem, as well as the next theorem holds.

Theorem 3.12. Let ϕ ∈ L1(Rn) be as in Theorem 3.10 that is

(i) ϕ(x) ≥ 0 a.e. x ∈ Rn.

(ii) ϕ is radial, i.e. ϕ(x) = ϕ̃(|x|)
(iii) ϕ is radially decreasing, i.e.,

|x| > |y| ⇒ ϕ(x) ≤ ϕ(y).

and a = ||ϕ||1. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then

lim
ε→0

(f ∗ ϕε)(x) = af(x)

for almost all x ∈ Rn.
21.9.2010
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Proof. The sketch of the proof: By a density of continuous functions
in Lp, we can choose g ∈ C0(R

n) so that ||f − g||p is small. By adding
and subtracting g, we can estimate

|(f ∗ ϕε)(x)− af(x)| ≤ |ϕε ∗ (f − g)(x)− a(f − g)(x)|
+ |(g ∗ ϕε)(x)− ag(x)| .

(3.13)

Since g ∈ C0(R
n), the second term tends to zero as ε → 0. Thus

we can focus attention on the first term on the right hand side. By
Theorem 3.10, we can estimate

|(f ∗ ϕε)(x)− af(x)| ≤ |ϕε ∗ (f − g)(x)− a(f − g)(x)|
≤ M(f − g)(x) + a |(f − g)(x)| .

Finally, we can show by using the weak type estimates that the quan-
tities on the right hand side get small almost everywhere.

Details: Case 1 ≤ p < ∞:
As sketched above the weak type estimates play a key role. Theorem
Hardy-Littlewood I (Theorem 2.12) implies

m({x ∈ Rn : Mf(x) > λ}) ≤ C

λ
||f ||1 (3.14)

for λ > 0, and Hardy-Littlewood II (Theorem 2.19) imply

m({x ∈ Rn : Mf(x) > λ})
Chebyshev

≤ C

λp
||Mf ||pp

H-L II

≤ C ||f ||pp . (3.15)

As g is continuous at x ∈ Rn it follows that for every η > 0 there
exists δ > 0 such that

|g(x− y)− g(x)| < η whenever |y| < δ.

Thus

|(g ∗ ϕε)(x)− ag(x)| ≤
∫
Rn

|g(x− y)− g(x)|ϕε(y) dy

≤ η

∫
B(0,δ)

ϕε(y) dy︸ ︷︷ ︸
≤||ϕ||1

+2 ||g||∞
∫
Rn\B(0,δ)

ϕε(x) dy︸ ︷︷ ︸
→0 as ε→0 by Lemma 3.6

.

Since η was arbitrary, it follows that

lim
ε→0

|(g ∗ ϕε)(x)− ag(x)| = 0

for all x ∈ Rn.
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This in mind we can estimate

lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)|

≤ lim sup
ε→0

|((f − g) ∗ ϕε)(x)− a(f − g)(x)|

+ lim sup
ε→0

|(g ∗ ϕε)(x)− ag(x)|︸ ︷︷ ︸
=0

≤ sup
ε>0

|((f − g) ∗ ϕε)(x)|+ a |(f − g)(x)|

Theorem 3.10

≤ CM(f − g)(x) + a |(f − g)(x)| .

(3.16)

Next we define

Ai = {x ∈ Rn : lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)| > 1

i
}.

By the previous estimate,

Ai ⊂ {x ∈ Rn : CM(f − g)(x) >
1

2i
} ∪ {x ∈ Rn : a |f(x)− g(x)| > 1

2i
},

for i = 1, 2, . . .. Let η > 0, and let g ∈ C0(R
n) be such that (density)

||f − g||p ≤ η.

This and the previous inclusion imply

m(Ai) ≤ m({x ∈ Rn : CM(f − g)(x) >
1

2i
}) +m({x ∈ Rn : a |f(x)− g(x)| > 1

2i
})

(3.14),(3.15)

≤ Cip ||f − g||pp + Cip ||f − g||pp
≤ Cip ||f − g||pp ≤ Cipηp

for every η, i = 1, 2, . . .. Thus

m(Ai) = 0

and

m(∪∞
i=1Ai) ≤

∞∑
i=1

m(Ai) = 0.

This gives us

m({x ∈ Rn : lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)| > 0}) = 0

which proofs the claim

lim
ε→0

|(f ∗ ϕε)(x)− af(x)| = 0 a.e. x ∈ Rn.

Case p = ∞: Now f ∈ L∞(Rn). We show that

lim
ε→0

(f ∗ ϕε)(x) = af(x)
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for almost every x ∈ B(0, r), r > 0. Let

f1(x) = fχB(0,r+1)(x) =

{
f(x), x ∈ B(0, r + 1)

0, otherwise,

and f2 = f − f1. Now f1 ∈ L1(Rn) and by the previous case

lim
ε→0

(f1 ∗ ϕε)(x) = af1(x)

for almost every x ∈ Rn. By utilizing this, we obtain for almost every
x ∈ B(0, r) that

lim
ε→0

(f ∗ ϕε)(x) = lim
ε→0

(f1 ∗ ϕε)(x) + lim
ε→0

(f2 ∗ ϕε)(x)

= af(x) + lim
ε→0

(f2 ∗ ϕε)(x),

and it remains to show that limε→0(f2 ∗ ϕε)(x) = 0 for almost all x ∈
B(0, r). To this end, let x ∈ B(0, r) so that f2(x−y) = 0 for y ∈ B(0, 1)
and calculate

|(f2 ∗ ϕε)(x)| =
∣∣∣∣∫

Rn

f2(x− y)ϕε(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn\B(0,1)

f2(x− y)ϕε(y) dy

∣∣∣∣
= ||f2||∞

∫
Rn\B(0,1)

ϕε(y) dy → 0

as ε → 0. �

By choosing

ϕ(x) = χB(0,1)(x)/m(B(0, 1)),

so that

ϕε(x) = χB(0,ε)/(ε
nm(B(0, 1))) = χB(0,ε)/m(B(0, ε)),

we immediately obtain

Theorem 3.17 (Lebesgue density theorem). If f ∈ L1
loc(R

n), then

lim
r→0

∫
B(x,R)

f(y) dy = f(x)

for almost every x ∈ Rn.

Example 3.18. Let

ϕ(x) = P (x) =
C(n)

(1 + |x|2)(n+1)/2

where the constant is chosen so that∫
Rn

P (x) dx = 1.
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Next we define

Pt(x) =
1

tn
P (

x

t
) = C(n)

t

(|x|2 + t2)(n+1)/2
, t > 0

and

u(x, t) = (f ∗ Pt)(x) =

∫
Rn

Pt(x− y)f(y) dy.

This is called the Poisson integral for f . It has the following properties

(i) ∆u = ∂2u
∂t2

+ ∂2u
∂x2

1
+ . . .+ ∂2u

∂x2
2
= 0 and

(ii) limt→0 u(x, t) = f(x) for almost every x ∈ Rn by Theorem 3.12.

Let

Rn+1
+ = {(x1, x2, . . . , t) ∈ Rn+1 : t > 0}

denote the upper half space. As stated above u is harmonic in Rn+1
+ so

that u(x, t) =
∫
Rn Pt(x− y)f(y) dy solves{

∆u(x, t) = 0, (x, t) ∈ Rn+1
+

u(x, 0) = f(x), x ∈ ∂Rn+1
+ = Rn,

where the boundary condition is obtained in the sense

lim
t→0

u(x, t) = f(x)

almost everywhere on Rn. As (x, t) → (x, 0) along a perpendicular
axis, we call this radial convergence.

Question Does the Poisson integral converge better than radially?

Definition 3.19. Let x ∈ Rn and α > 0. Then

(i) We define a cone

Γα(x) = {(y, t) ∈ Rn+1
+ : |x− y| < αt}.

(ii) Function u(x, t) converges nontangentially, if u(y, t) → f(x) and
(y, t) → (x, 0) so that (y, t) remains inside the cone Γα(x).

Theorem 3.20. Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and u(x, t) = (f ∗Pt)(x).
Then for every α > 0, there exists C = C(n, α) such that

u∗
α(x) := sup

(y,t)∈Γα(x)

|u(y, t)| ≤ CMf(x)

for every x ∈ Rn.

u∗ is called a nontangential maximal function. 23.9.2010

Proof. First we show that

Pt(y − z) ≤ C(α, n)Pt(x− z) for every (y, t) ∈ Γα(x), z ∈ Rn.
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To establish this, we calculate

|x− z|2 ≤ (|x− y|+ |y − z|)2

convexity

≤ 2(|x− y|2 + |y − z|2)
≤ 2((αt)2 + |y − z|2).

Thus

|x− z|2 + t2 ≤ (2α2 + 1)t2 + 2 |y − z|2

≤ max(2, 2α2 + 1)(|y − z|2 + t2)

so that

|x− z|2 + t2

max(2, 2α2 + 1)
≤ (|y − z|2 + t2).

We apply this and deduce

Pt(y − z) = C(n)
t

(|y − z|2 + t2)(n+1)/2

≤ C(n)max(2, 2α2 + 1)(n+1)/2 t

(|x− z|2 + t2)(n+1)/2

= C(n, α)Pt(x− z).

Utilizing this result we attack the original question and estimate

|u(y, t)| ≤
∫
Rn

|f(z)|Pt(y − z) dz

≤ C(α, n)

∫
Rn

|f(z)|Pt(x− z) dz

= C(α, n)(|f | ∗ Pt)(x)

≤ C(α, n) sup
t>0

(|f | ∗ Pt)(x)

Theorem 3.10

≤ C(α, n)Mf(x).

This concludes the proof giving

sup
(x,t)∈Γα(x)

|u(y, t)| ≤ cMf(x).

�

Corollary 3.21. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then

(f ∗ Pt)(y) → f(x)

nontangentially for almost every x ∈ Rn.

Proof. Replace in (3.16) the use of Theorem 3.10 by the above estimate.
�
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Remark 3.22. By considering a discontinuous f ∈ Lp, we see that
(f ∗ Ptn)(yn) does not converge to f(x) for every sequence (yn, tn) →
(x, 0). The cone is not the whole of the half space i.e. α must be finite!

Nevertheless, if f ∈ C(Rn) ∩ L∞(Rn), it follows that

u(y, t) = (f ∗ Pt)(y) → f(x)

when (y, t) → (x, 0) in Rn+1
+ without further restrictions. This is a

consequence of Remark 3.9.

4. Muckenhoupt weights

A weight is a function w ∈ L1
loc(R

n), such that w ≥ 0 a.e. We have
already seen that strong (p, p) property for a Hardy-Littlewood maxi-
mal function is an important tool in many applications. Next we study
the question in the weighted case:

Let 1 < p < ∞. Which weights w ∈ L1
loc(R

n) satisfy∫
Rn

(Mf(x))pw(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx? (4.1)

for every f ∈ L1
loc(R

n). As before

Mf(x) = sup
Q∋x

1

m(Q)

∫
Q

|f(y)| dy

is a Hardy-Littlewood maximal function.
This estimate implies the weak (p, p) estimate. Indeed,∫
{x∈Rn :Mf(x)>λ}

w(x) dx ≤
∫
{x∈Rn :Mf(x)>λ}

(Mf(x)

λ

)p

w(x) dx

≤ 1

λp

∫
Rn

(Mf(x))pw(x) dx

(4.1)

≤ C

λp

∫
Rn

|f(x)|pw(x) dx.

(4.2)

If we define a measure

µ(E) :=

∫
E

w(x) dx

then the weighted strong (p, p) estimate (4.1) can be written as∫
Rn

(Mf(x))p dµ ≤ C

∫
Rn

|f(x)|p dµ (4.3)

First, we derive some consequences for the weighted weak (p, p) esti-
mate. Thus we also obtain some necessary conditions for the question:
Which weights w ∈ L1

loc(R
n) satisfy weak (p, p) type estimate?
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Lemma 4.4. Suppose that the weighted weak (p, p) estimate (4.2) holds
for some p, 1 ≤ p < ∞. Then( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

µ(Q)

∫
Q

|f(x)|p dµ

for all cubes Q ⊂ Rn and f ∈ L1
loc(R

n).

Proof. Fix a cube. If
∫
Q
|f(x)| dx = 0 or

∫
Q
|f(x)| dµ(x) = ∞ then

the result immediately follows. Thus we may assume

1

m(Q)

∫
Q

|f(x)| dx > λ > 0

which implies according to the definition of the maximal function that

Mf(x) > λ > 0

for every x ∈ Q. In other words,

Q ⊂ {x ∈ Rn : Mf(x) > λ}

so that

µ(Q) ≤ µ({x ∈ Rn : Mf(x) > λ})
(4.2)

≤ C

λp

∫
Rn

|f(x)|p dµ.

If we replace f by fχQ then this gives

µ(Q) ≤ C

λp

∫
Q

|f(x)|p dµ,

and by recalling the definition of λ we get the claim. �
Remark 4.5. By analyzing the previous result, we see some of the
properties of weights we are studying. Let us choose f = χE, E ⊂ Q a
measurable set, in the previous lemma. Then the lemma gives

µ(Q)
(m(E)

m(Q)

)p

≤ Cµ(E). (4.6)

This implies

(i) Either w = 0 a.e. or w > 0 a.e. in Q

Indeed, otherwise it would hold for

E = {x ∈ Q : w(x) = 0}
that

m(E),m(Q \ E) > 0

(if ”w = 0 a.e. in Q” is false, then m(Q \ E) > 0 and similarly
for the other case) and further by m(Q \ E) > 0 it follows that

µ(Q) > 0.
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Then the right hand side would be zero (clearly µ(E) =
∫
E
w(x) dx =∫

{w=0}w dx = 0) whereas the left hand side would be positive. A

contradiction.
(ii) By choosing Q = Q(x, 2l) and E = Q(x, l), we see that

µ(Q(x, 2l)) ≤ Cµ(Q(x, l)),

because m(Q(x, l))/m(Q(x, 2l)) = 2n. Measures with this prop-
erty are called doubling measures.

(iii) Either w = ∞ a.e. or w ∈ L1
loc(R

n).

If there would be a set

E ⊂ Q such that w(x) < ∞ and m(E) > 0,

by (4.6) it follows that µ(Q) =
∫
Q
w(x) dx is finite, and thus

w ∈ L1(Q)

and by choosing larger cubes, we get w ∈ L1
loc(R

n). Thus the
result follows.
Observe that w ∈ L1

loc(R
n) was one of our assumptions when

defining weights, but it would be possible to take the weak type
estimate as a starting point and then derive this as a result as
shown above.

Next we derive a necessary condition for weak (1, 1) estimate to
hold.
Case p = 1: We shall use notation

ess inf
x∈Q

w(x) := sup{m ∈ R : w(x) ≥ m a.e. x ∈ Q}

and define a set

Eε = {x ∈ Q : w(x) < ess inf
y∈Q

w(y) + ε}

for some ε > 0. By definition of ess inf, we have m(Eε) > 0.
Now by (4.6),

µ(Q)

m(Q)
≤ C

µ(Eε)

m(Eε)

def of µ
=

C

m(Eε)

∫
Eε

w(x) dx ≤ C(ess inf
y∈Q

w(y) + ε).

By passing to a zero with ε, and recalling that µ(Q) =
∫
Q
w(x) dx, we

get Muckenhoupt A1-condition

1

m(Q)

∫
Q

w(x) dx ≤ C ess inf
y∈Q

w(y). (4.7)

If this condition holds we denote w ∈ A1.
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Lemma 4.8. A weight w satisfies Muckenhoupt A1-condition if and
only if

Mw(x) ≤ Cw(x)

for almost every x ∈ Rn.

On the other hand from the Lebesgue density theorem, we get w(x) ≤
Mw(x) for almost every x ∈ Rn so that

w(x) ≤ Mw(x) ≤ Cw(x).

Proof. ”⇐” Suppose that Mw(x) ≤ Cw(x) for almost every x ∈ Rn.
Then

1

m(Q)

∫
Q

w(y) dy ≤ Cw(x) a.e. x ∈ Q,

and thus

1

m(Q)

∫
Q

w(y) dy ≤ C ess inf
x∈Q

w(x).

”⇒” Suppose that w ∈ A1 so that
1

m(Q)

∫
Q
w(y) dy ≤ C ess infx∈Qw(x).28.9.2010

We shall show that

m({x ∈ Rn : Mw(x) > Cw(x)}) = 0.

Choose a point x ∈ {x ∈ Rn : Mw(x) > Cw(x)} so that Mw(x) >
Cw(x). Then there exists a cube Q ∋ x such that

1

m(Q)

∫
Q

w(y) dy > Cw(x).

Without loss of generality we may choose this cube so that the corners
lie in the rational points. Thus

Cw(x) <
1

m(Q)

∫
Q

w(y) dy
A1

≤ C ess inf
y∈Q

w(y)

so that

w(x) < ess inf
y∈Q

w(y).

For this cube, we denote by

EQ = {x ∈ Q : w(x) < ess inf
y∈Q

w(y)})

which is of measure zero. Now we repeat the process for each x ∈ {x ∈
Rn : Mw(x) > Cw(x)} and as we restricted ourselves to a countable
family of cubes with corners at rational points, we have

m(
∪

EQ) = 0

because countable union of zero measurable sets has a measure zero.
�



HARMONIC ANALYSIS 33

Observe/recall that uncountable union of zero measurable sets is
not necessarily zero measurable, cf. m(∪x∈(0,1){x}) = 1. Therefore the
restriction on the countable set of cubes was necessary above.

Example 4.9. w(x) = |x|−α , 0 ≤ α < n, x ∈ Rn, belongs to A1.
Indeed, let x ∈ Rn\{0}, x ∈ Q. Then by choosing a radius r = l(Q)

√
n,

we see that

Q ⊂ B(x, r).

We calculate

1

m(Q)

∫
Q∋x

w(y) dy ≤ C

B(x, r)

∫
B(x,r)

w(y) dy

z = y
|x| ,y = z |x| , dy = |x|n dz

=
C

rn

∫
B( x

|x| ,
r
|x| )

||x| z|−α |x|n dz

=
C |x|−α(

r
|x|

)n

∫
B( x

|x| ,
r
|x| )

|z|−α dz

≤ Cw(x)Mw
( x

|x|

)
︸ ︷︷ ︸

<∞

.

Thus by taking a supremum over Q such that x ∈ Q, we see that

Mw(x) ≤ Cw(x),

so that by Lemma 4.8, w ∈ A1. Also calculate
∫

B(0,r)
w dx.

Next we derive a necessary condition for weak (p, p) estimate to
hold.
Lemma 4.4 gives us the estimate

µ(Q)
( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

∫
Q

|f(x)|p dµ.

We choose f(x) = w1−p′(x), where 1/p′ + 1/p = 1 i.e. p′ = p/(p − 1).
Recalling that µ(Q) =

∫
Q
w(x) dx, we get∫

Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p

≤ C

∫
Q

w(1−p′)p(x)w(x) dx

= C

∫
Q

w(x)(1−p′)p+1 dx.

A short calculation ((1 − p′)p + 1 = (1 − p/(p − 1))p + 1 = ((p − 1 −
p)/(p− 1))p+ 1 = −p/(p− 1) + 1 = 1− p′) shows that

(1− p′)p+ 1 = 1− p′
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so that if we divide by the integral on the right hand side the above
inequality, we get

1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p−1

≤ C, (4.10)

or
1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1/(1−p)(x) dx
)p−1

≤ C.

This is called the Muckenhoupt Ap-condition.
Observe that above, we implicitly use w1−p′ ∈ L1

loc(R
n). If this is

not the case, we can consider

f = (w + ε)1−p′ ,

derive the above estimate, and let finally ε → 0. After this argument,
as w > 0 a.e., (4.10) implies that w1−p′ ∈ L1

loc(R
n).

Example 4.11. w(x) = |x|−α , 0 ≤ α < n, x ∈ Rn, belongs to Ap. It
might also be instructive to calculate

1

m(B(0, r)

∫
B(0,r)

w dx
( 1

m(B(0, r))

∫
B(0,r)

w1/(1−p) dx
)p−1

.

Let us collect the above definitions.

Definition 4.12 (Muckenhoupt 1972). Let w ∈ L1
loc(R

n), w > 0 a.e.
Then w satisfies A1-condition if there exists C > 0 s.t.∫

Q

w(x) dx ≤ C ess inf
y∈Q

w(y).

for all cubes Q ⊂ Rn. For 1 < p < ∞, w satisfies Ap-condition if there
exists C > 0 s.t.

1

m(Q)

∫
Q

w(x) dx
( 1

m(Q)

∫
Q

w1−p′(x) dx
)p−1

≤ C

for all cubes Q ⊂ Rn.

Remark 4.13. (i) 1− p′ = 1/(1− p) < 0, w1−p′ ∈ L1
loc(R

n)
(ii) Let p = 2. Then

1

m(Q)

∫
Q

w(x) dx
1

m(Q)

∫
Q

1

w(x)
dx ≤ C

(iii)

m(Q) =

∫
Q

w1/pw−1/p dx

Hölder

≤
(∫

Q

wp(1/p) dx
)1/p(∫

Q

wp′(−1/p) dx
)1/p′

=
(∫

Q

w dx
)1/p(∫

Q

w1−p′ dx
)1/p′

.



HARMONIC ANALYSIS 35

Dividing by m(Q) = m(Q)1/pm(Q)1/p
′
and then taking power p

on both sides we get

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1−p′ dx
)p−1

≥ 1 (4.14)

so that ( 1

m(Q)

∫
Q

w1−p′ dx
)1−p

≤ 1

m(Q)

∫
Q

w(x) dx.

This was (a consequence of) Hölder’s inequality. On the other
hand, by looking at the Ap condition, we see that the inequality
is reversed. Thus Ap condition is a reverse Hölder’s inequality.

Theorem 4.15. Ap ⊂ Aq, 1 ≤ p < q.

Proof. Case 1 < p < ∞. We recall that q′ − 1 = 1/(q − 1).( 1

m(Q)

∫
Q

( 1

w

) 1
q−1

dx
)q−1

Hölder

≤
( 1

m(Q)

)q−1(∫
Q

( 1

w

) 1
q−1

q−1
p−1

dx
)(q−1) p−1

q−1
m(Q)(q−1)(1− p−1

q−1
)

= C
(∫

Q

( 1

w

)1/(p−1)

dx
)p−1

m(Q)1−p

w ∈ Ap

≤
( 1

m(Q)

∫
Q

w dx
)−1

which proves the claim in this case.
Case p = 1.( 1

m(Q)

∫
Q

( 1

w

)1/(q−1)

dx
)q−1

≤ ess sup
Q

1

w

=
1

ess infQw

w ∈ A1

≤ C∫
Q
w dx

. �

Theorem 4.16. Let 1 ≤ p < ∞, and w ∈ L1
loc(R

n), w < 0 a.e. Then
w ∈ Ap if and only if( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ C

µ(Q)

∫
Q

|f(x)|p dµ.

for every f ∈ L1
loc(R

n) and Q ⊂ Rn.

Proof. Case 1 < p < ∞.

”⇐” was already proven before (4.10).
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”⇒” First we use Hölder’s inequality

1

m(Q)

∫
Q

|f(x)| dx =
1

m(Q)

∫
Q

|f(x)|w(x)1/p
( 1

w(x)

)1/p

dx

≤ 1

m(Q)

(∫
Q

|f(x)|p w(x) dx
)1/p(∫

Q

( 1

w(x)

)p′/p

dx
)1/p′

,

for 1/p′ + 1/p = 1. By taking the power p on both sides, using the
definition of µ, arranging terms, using p/p′ = p− 1, −p′/p = 1/(1− p),
and Ap condition, we get

µ(Q)
( 1

m(Q)

∫
Q

|f(x)| dx
)p

≤ 1

m(Q)p

(∫
Q

|f(x)|pw(x) dx
)

·
∫
Q

w(x) dx
(∫

Q

w(x)1/(1−p) dx
)p−1

︸ ︷︷ ︸
w ∈ Ap

≤ Cm(Q)p

≤ C

∫
Q

|f(x)|p dµ.

Case p = 1.

”⇐” was already proven before (4.7).

”⇒” Let w ∈ A1 i.e.

1

m(Q)

∫
Q

w(x) dx ≤ C ess inf
x∈Q

w(x).

Then

µ(Q)
1

m(Q)

∫
Q

|f(x)| dx ≤ 1

m(Q)

∫
Q

|f(x)|µ(Q) dx

w ∈ A1

≤
∫
Q

|f(x)| ess inf
x∈Q

w(x) dx

≤ C

∫
Q

|f(x)|w(x) dx

≤ C

∫
Q

|f(x)| dµ. �

We aim at proving that the weighted weak/strong type estimate and
Ap condition are equivalent. To establish this, we next study Calderón-
Zygmund decomposition. It is an important tool both in harmonic
analysis and in the theory of PDEs.30.9.2010

4.1. Calderón-Zygmund decomposition. In this section we inte-
grate with respect to the measure m only, and thus we recall the nota-
tion

∫
Q
= 1

m(Q)

∫
Q
.
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Next we introduce dyadic cubes, which are generated using powers
of 2.

Definition 4.17 (Dyadic cubes). A dyadic interval on R is

[m2−k, (m+ 1)2−k)

where m, k ∈ Z. A dyadic cube in Rn is∏
[mj2

−k, (mj + 1)2−k)

where m1,m2, . . . ,mn, k ∈ Z.

Observe that corners lie at 2−kZn and side length is 2−k. Dyadic
cubes have an important property that they are either disjoint or one
is contained into another.

Notations

Dk = ”a collection of dyadic cubes with side length 2−k. ”

A collection of all the dyadic cubes is denoted by

D =
∪
k∈Z

Dk.

Theorem 4.18 (Local Calderón-Zygmund decomposition). Let Q0 ⊂
Rn be a dyadic cube, and f ∈ L1(Q0). Then if

λ ≥
∫
Q0

|f(x)| dx

there exists a collection of dyadic cubes

Fλ = {Qj : j = 1, 2, . . .}

such that

(i)

Qj ∩Qk = ∅ when j ̸= k,

(ii)

λ <

∫
Qj

|f(x)| dx ≤ 2nλ, j = 1, 2, . . . ,

and
(iii)

|f(x)| ≤ λ for a.e. x ∈ Q0 \ ∪∞
j=1Qj.

Remark 4.19. Naturally, if |f(x)| ≤ λ, then Fλ = ∅. Notice also
the assumption that Q0 is dyadic could be dropped, and that if the
condition λ ≥

∫
Q0

|f(x)| dx does not hold, then we can choose a larger

cube to begin with so that this condition is satisfied.
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Proof of Theorem 4.18. Clearly, Q0 ̸∈ Fλ because of our assumption.
We split Q0 into 2n dyadic cubes with side length l(Q0)/2. Then we
choose to Fλ, the cubes for which

λ <

∫
Q

|f(x)| dx.

Observe that (i) holds because we use dyadic cubes, and because of the
estimate ∫

Q

|f(x)| dx ≤ m(Q0)

m(Q)

∫
Q0

|f(x)| dx

≤ 2n
∫
Q0

|f(x)| dx ≤ 2nλ,

(4.20)

also the upper bound in (ii) holds. For the cubes that were not chosen
i.e. for which ∫

|f(x)| dx ≤ λ,

we continue the process. Then the estimate (ii) holds for all the cubes
that were chosen at some round. On the other hand, according to
Lebesgue’s density theorem

|f(x)| = lim
k→∞

∫
Q(k)

|f(y)| dy
Q(k) was not chosen

≤ λ

for a.e. x ∈ Rn \ ∪Q∈Fλ
Q. �

Next we prove a global version of the Calderón-Zygmund decompo-
sition. The idea in the proof is similar to the local version, but as we
work in the whole of Rn, there is no initial cube Q0.

Theorem 4.21 (Global Calderón-Zygmund decomposition). Let f ∈
L1(Rn) and λ > 0. Then there exists a collection of dyadic cubes

Fλ = {Qj : j = 1, 2, . . .}

such that

(i)

Qj ∩Qk = ∅ when j ̸= k,

(ii)

λ <

∫
Qj

|f(x)| dx ≤ 2nλ, j = 1, 2, . . . ,

and
(iii)

|f(x)| ≤ λ for a.e. x ∈ Rn \ ∪∞
j=1Qj.
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Proof. We study a subcollection

Fλ ⊂ D

of dyadic cubes, which are the largest possible cubes such that∫
Q

|f(x)| dx > λ (4.22)

holds. In other words, Q ∈ Fλ if Q ∈ Dk for some k, if (4.22) holds
and for all the larger dyadic cubes Q̃, Q ⊂ Q̃, it holds that∫

Q̃

|f(y)| dy ≤ λ.

The largest cube exists, if (4.22) holds for Q, because∫
Q̃

|f(x)| dx ≤ ||f ||1
m(Q̃)

→ 0

as m(Q̃) → ∞ because f ∈ L1(Rn). As the cubes in Fλ are maximal,
they are disjoint, because if this were not the case the smaller cube
would be contained to larger one as they are dyadic and thus we could
replace it by the larger one. A similar calculation as in (4.20) shows that
also the upper bound in (ii) holds. The proof is completed similarly
as in the local version: (iii) is a consequence of Lebesgue’s density
theorem Theorem 3.17. �
Example 4.23. Calderón-Zygmund decomposition for

f : R → [0,∞], f(x) = |x|−1/2

with λ = 1.

Example 4.24. By using the Calderón-Zygmund decomposition, we
can split any f ∈ L1(Rn) into a good and a bad part as (further details
during the lecture)

f = g + b

as

g =

{
f(x), x ∈ Rn \ ∪∞

j=1Qj,∫
Qj

f(y) dy, x ∈ Qj ∈ Fλ

and

b(x) =
∞∑
j=1

bj(x),

bj(x) = (f(x)−
∫
Qj

f(y) dy)χQj
(x).

Observe that g ≤ 2nλ and
∫
Qj

b(y) dy = 0. Split f : R → [0,∞], f(x) =

|x|−1/2 in this way with λ = 1.
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Lemma 4.25. Let f ∈ L1(Rn) and

Fλ = {Qj : j = 1, 2, . . .}

Calderón-Zygmund decomposition with λ > 0 from Theorem 4.21. Then

{x ∈ Rn : Mf(x) > 4nλ} ⊂ ∪∞
j=13Qj.

Proof. The Calderón-Zygmund decomposition gives bounds for the av-
erages, so our task is passing from the averages to the maximal function.
To this end, let

x ∈ Rn \ ∪∞
j=13Qj

and Q ⊂ Rn is a cube (not necessarily dyadic) s.t. x ∈ Q. If we choose,
k so that

2−k−1 ≤ l(Q) < 2−k,

then there exists at the most 2n dyadic cubes R1, . . . Rl ∈ Dk such that

Rm ∩Q ̸= ∅, m = 1, . . . , l.

Because Rm and Q intersect, Q ⊂ 3Rm. On the other hand Rm is not
contained to any Qj ∈ Fλ, because otherwise we would have x ∈ Q ⊂
3Qj which contradicts our assumption x ∈ Rn \∪∞

j=13Qj. As Rm is not
in Fλ, it follows by definition that∫

Rm

|f(y)| dy ≤ λ

for m = 1, . . . , l. Thus∫
Q

|f(y)| dy =
1

m(Q)

l∑
m=1

∫
Rm∩Q

|f(y)| dy

≤
l∑

m=1

m(Rm)

m(Q)

1

m(Rm)

∫
Rm

|f(y)| dy

≤ l2nλ ≤ 4nλ.

Moreover,

Mf(x) = sup
Q∋x

∫
Q

|f(y)| dy ≤ 4nλ

for every x ∈ Rn \ ∪∞
j=13Qj. Thus

Rn \ ∪∞
j=13Qj ⊂ {x ∈ Rn : Mf(x) ≤ 4nλ}. �

5.10.2010

Corollary 4.26. Let f ∈ L1(Rn) and

Fλ = {Qj : j = 1, 2, . . .}

Calderón-Zygmund decomposition with λ > 0 from Theorem 4.21. Then
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(i)

{x ∈ Rn : Mf(x) > 4nλ} ⊂ ∪∞
j=13Qj.

and
(ii)

∪∞
j=1Qj ⊂ {x ∈ Rn : Mf(x) > λ}.

Proof. (i) The previous lemma.
(ii) Qj ∈ Fλ implies ∫

Qj

|f(y)| dy > λ

and thus

Mf(x) > λ

for every x ∈ Qj. Thus

∪∞
j=1Qj ⊂ {x ∈ Rn : Mf(x) > λ}. �

4.2. Connection of Ap to weak and strong type estimates. Now,
we return to Ap-weights.

Theorem 4.27. Let w ∈ L1
loc(R

n), and 1 ≤ p < ∞. Then the following
are equivalent

(i) w ∈ Ap.
(ii)

µ({x ∈ Rn : Mf(x) > λ}) ≤ C

λp

∫
Rn

|f(x)|p dµ

for every f ∈ L1
loc(R

n), λ > 0.

Proof. It was shown above (4.10) in case 1 < p < ∞ and in the case
p = 1 above (4.7), that (ii) ⇒ (i).

Then we aim at showing that (i) ⇒ (ii). The idea is to use Lemma 4.25
and to estimate

µ({x ∈ Rn : Mf(x) > 4nλ}) ≤
∞∑
j=1

µ(3Qj), (4.28)

for Calderón-Zygmund cubes at the level λ and for f ∈ L1(Rn). Fur-
ther, we have shown that w ∈ Ap implies that µ is a doubling measure.
Thus

µ(3Qj) ≤ µ(Qj)

Theorem 4.16

≤ C
(∫

Qj

|f(x)| dx
)−p

∫
Qj

|f(x)|p dµ(x)

Qj is a Calderón-Zygmund cube

≤ C

λp

∫
Qj

|f(x)|p dµ(x).
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Using this in (4.28), we get

µ({x ∈ Rn : Mf(x) > 4nλ}) ≤
∞∑
j=1

µ(3Qj)

≤ C

λp

∞∑
j=1

∫
Qj

|f(x)|p dµ(x)

Qj are disjoint

≤ C

λp

∫
Rn

|f(x)|p dµ(x),

and then replacing 4nλ by λ gives the result.
However, in the statement, we only assumed that f ∈ L1

loc(R
n) and

in the above argument that f ∈ L1(Rn). We treat this difficulty by
considering

fi = fχB(0,i), i = 1, 2, . . . ,

and then passing to a limit i → ∞ with the help of Lebesgue’s mono-
tone convergence theorem. To be more precise, repeating the above
argument, we get

µ({x ∈ Rn : Mfi(x) > 4nλ}) ≤ C

λp

∫
Rn

|fi(x)|p dµ(x).

Since

{x ∈ Rn : Mf(x) > 4nλ} = ∪∞
i=1{x ∈ Rn : Mfi(x) > 4nλ}

the basic properties of measure and the above estimate imply

µ({x ∈ Rn : Mf(x) > 4nλ}) = lim
i→∞

µ({x ∈ Rn : Mfi(x) > 4nλ})

≤ lim
i→∞

C

λp

∫
Rn

|fi(x)|p dµ

MON
=

C

λp

∫
Rn

|f(x)|p dµ. �

Next we show that w ∈ Ap satisfies a reverse Hölder’s inequality.
First, by the usual Hölder’s inequality, we get

1

m(Q)

∫
Q

|f(x)| dx ≤ 1

m(Q)

(∫
Q

|f(x)|p dx
)1/p(∫

Q

1p
′
dx

)1/p′

≤ m(Q)
1
p′−1

(∫
Q

|f(x)|p dx
)1/p

≤
(∫

Q

|f(x)|p dx
)1/p

.

Similarly (∫
Q

|f(x)|p dx
)1/p

≤ C
(∫

Q

|f(x)|q dx
)1/q

, q > p.
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Thus it is natural, to call inequality in which the power on the left hand
side is larger the reverse Hölder inequality. Reverse Hölder inequalities
tell, in general, that a function is more integrable than it first appears.
We will need the following deep result of Gehring (1973). We skip the
lengthy proof.

Lemma 4.29 (Gehring’s lemma). Suppose that for p, 1 < p < ∞,
there exists C ≥ 1 such that(∫

Q

|f(x)|p dx
)1/p

≤ C

∫
Q

|f(x)| dx

for all cubes Q ⊂ Rn. Then there exists q > p such that(∫
Q

|f(x)|q dx
)1/q

≤ C

∫
Q

|f(x)| dx

for all cubes Q ⊂ Rn.

Theorem 4.30 (reverse Hölder’s inequality). Suppose that w ∈ Ap,
1 ≤ p < ∞. Then there exists δ > 0 and C > 0 s.t.( 1

m(Q)

∫
Q

w1+δ dx
)1/(1+δ)

≤ C

m(Q)

∫
Q

w dx

for all cubes Q ⊂ Rn.

Proof. Since w ∈ Ap, we have

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

≤ C.

On the other hand Hölder’s inequality implies for any measurable f > 0
(choose p = p′ = 2 in (4.14)) that

1

m(Q)

∫
Q

f dx
( 1

m(Q)

∫
Q

1

f
dx

)
≥ 1.

Then we set f = w1/(p−1) and get

1 ≤ 1

m(Q)

∫
Q

w1/(p−1) dx
( 1

m(Q)

∫
Q

( 1

w

)1/(p−1)

dx
)
.

Combining the inequalities for w , we get

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

.

so that

1

m(Q)

∫
Q

w dx ≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1
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or recalling f( 1

m(Q)

∫
Q

fp−1 dx
)1/(p−1)

≤ C

m(Q)

∫
Q

f dx.

Now, we may suppose that p > 2 because due to Theorem 4.15, we
have Ap ⊂ Aq, 1 ≤ p < q, and by this assumption p − 1 > 1. By
Gehring’s lemma Lemma 4.29, there exists q > p− 1 such that( 1

m(Q)

∫
Q

f q dx
)1/q

≤ C

m(Q)

∫
Q

f dx

or again recalling f and taking power p− 1 on both sides( 1

m(Q)

∫
Q

wq/(p−1) dx
)(p−1)/q

≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1

.

The right hand side is estimated by using Hölder’s inequality as( 1

m(Q)

∫
Q

w1/(p−1) dx
)p−1

≤ 1

m(Q)

∫
Q

w dx

and the proof is completed by choosing δ such that 1+δ = q/(p−1). �

Theorem 4.31. If w ∈ Ap, then w ∈ Ap−ε for some ε > 0.

Proof. First we observe that if w ∈ Ap, then (4. Exercise, problem 4)

w1−p′ ∈ Ap′ .

Utilizing the previous theorem (Theorem 4.30) for
(

1
w

)p′−1

=
(

1
w

)1/(p−1)

,

we see that( 1

m(Q)

∫
Q

( 1

w

)(1+δ)/(p−1)

dx
)(p−1)/(1+δ)

≤
( C

m(Q)

∫
Q

( 1

w

)1/(p−1)

dx
)p−1

.

Now we can choose ε > 0 such that

p− 1

1 + δ
= (p− ε)− 1

We utilize this and multiply the previous inequality by 1
m(Q)

∫
Q
w dx to

have

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

( 1

w

)1/((p−ε)−1)

dx
)(p−ε)−1

≤ 1

m(Q)

∫
Q

w dx
( C

m(Q)

∫
Q

( 1

w

)1/(p−1)

dx
)p−1

w ∈ Ap

≤ C.

Thus w ∈ Ap−ε. �

Next we answer the original question.



HARMONIC ANALYSIS 45

Theorem 4.32 (Muckenhoupt). Let 1 < p < ∞. Then there exists
C > 0 s.t. ∫

Rn

(
Mf(x)

)p

w(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx

if and only if w ∈ Ap.

Proof. ”⇒” has already been proven.

”⇐” We know that w > 0 a.e. so that

0 = µ(E) =

∫
E

w(x) dx ⇔ m(E) = 0.

and thus

||f ||L∞(µ)

def
= inf{λ : µ({x ∈ Rn : |f(x)| > λ}) = 0}
= inf{λ : m({x ∈ Rn : |f(x)| > λ}) = 0}
= ||f ||∞ .

Then

||Mf ||L∞(µ) = ||Mf ||∞
Lemma 2.8

≤ ||f ||∞ = ||f ||L∞(µ)

so that M is of a weighted strong type (∞,∞). On the other hand,
by Theorem 4.27 implies that M is of weak type (p, p). Moreover, the
Marcinkiewicz interpolation theorem Theorem 2.21 holds for all the
measures. Thus M is of strong type (q, q) with q > p

||Mf ||Lq(µ) ≤ C ||f ||Lq(µ) .

By the previous theorem w ∈ Ap implies that w ∈ Ap−ε. Thus we can
repeat the above argument starting with p− ε to see that

||Mf ||Lp(µ) ≤ C ||f ||Lp(µ)

with the original p. �
7.10.2010

5. Fourier transform

5.1. On rapidly decreasing functions. We define a Fourier trans-
form of f ∈ L1(R) as

F (f) = f̂(ξ) =

∫
R

f(x)e−2πixξ dx. (5.1)

Remark 5.2. (i) e−2πixξ = cos(2πxξ) − i sin(2πxξ), (even part in
real, and odd in imaginary).

(ii) Theory generalizes to Rn (then x · ξ =
∑n

i=1 xiξi and e−2πix·ξ).
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Example 5.3 (Warning). The Fourier transform is well defined for
f ∈ L1(R) because ∣∣f(x)e−2πixξ

∣∣ = |f(x)|

which is integrable. However, nothing guarantees that f̂(ξ) would be
in L1(R). Indeed let f : R → R, f(x) = χ{−1/2,1/2}(x), which is in
L1(R). Then for ξ ̸= 0,

f̂(ξ) =

∫
R

f(x)e−2πixξ dx

=

∫ 1/2

−1/2

e−2πixξ dx

=

∫ 1/2

−1/2

cos(2πxξ) dx− i

∫ 1/2

−1/2

sin(2πxξ) dx︸ ︷︷ ︸
=0

=
/1/2

−1/2

sin(2πxξ)

2πξ

=
2 sin(πξ)

2πξ
=

sin(πξ)

πξ
,

but sin(πξ)
πξ

is not integrable (the integral of the positive part = ∞ and

the integral over the negative part = −∞ over any interval (a,∞]).
Later, we would like to write

F−1f̂(ξ) =

∫
R

f̂(x)e2πixξ dx

for the inverse Fourier transform, which however makes no sense as
such for the function that is not integrable.

The problem described in the example above does not appear for
the functions that are smooth and decay rapidly at the infinity, the so
called Schwartz class. Later we use the functions on the Schwartz class
to define Fourier transform in L2 and further in Lp.

Definition 5.4. A function f is in the Schwartz class S(R) if

(i) f ∈ C∞(R)
(ii)

sup
x∈R

|x|k
∣∣∣∣dlf(x)dxl

∣∣∣∣ < ∞, for every k, l ≥ 0.

In other words, every derivative decays at least as fast as any
power of |x|.
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Example 5.5. The standard mollifier (as well as all of C∞
0 (R))

φ =

{
exp

(
1

|x|2−1

)
, x ∈ (−1, 1)

0, else.

is in S(R). Also for the Gaussian

f(x) = e−x2 ∈ S(R).

Indeed,

df(x)

dx
= −2xe−x2

= −2xf(x)

and so forth so that all the derivatives will be of the form

polynomial · f(x)

and

|x|k |polynomial · f(x)| ≤ |polynomial| |f(x)| .

Thus as e−x2
decays faster than any polynomial, we see that e−x2 ∈

S(R).

Lemma 5.6. Suppose that f ∈ S(R). Then

(i) ̂(αf + βg) = αf̂ + βĝ.

(ii)
(̂
df
dx

)
(ξ) = 2πiξf̂(ξ).

(iii) df̂
dξ
(ξ) = ̂(−2πixf)(ξ),

(iv) f̂ is continuous,

(v) ||f̂ ||∞ ≤ ||f ||1,
(vi) f̂(εx) = 1

ε
f̂( ξ

ε
) = f̂ε(ξ), ε > 0,

(vii) ̂f(x+ h) = f̂(ξ)e2πihξ,

(viii) ̂f(x)e2πihx = f̂(ξ − h),

Proof. (i) Integral is linear.
(ii)

̂( df

dx

)
(ξ) =

∫
R

(
df

dx

)
e−2πixξ dx

integrate by parts
= −

∫
R

f(x)
d

dx
e−2πixξ dx

= 2πiξ

∫
R

f(x)e−2πixξ dx = 2πiξf̂(ξ).
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(iii)

df̂

dξ
(ξ) =

d

dξ

∫
R

f(x)e−2πixξ dx

=

∫
R

f(x)
d

dξ
e−2πixξ dx

= −
∫
R

f(x)2πixe−2πixξ dx

= ̂(−2πixf)(ξ).

The interchange of the derivative and integral is ok as f ∈ S(R):
in the detailed proof one can write down the difference quotient
and estimate it by definition of S(R).

(iv)

lim
h→0

f̂(ξ + h) = lim
h→0

∫
R

f(x)e−2πix(ξ+h) dx

DOM, |f(x)e−2πix(xi+h)|≤|f(x)|
=

∫
R

f(x) lim
h→0

e−2πix(ξ+h) dx = f̂(ξ).

(v) ∣∣∣∣∫
R

f(x)e−2πixξ dx

∣∣∣∣ ≤ ∫
R

|f(x)|
∣∣e−2πixξ

∣∣︸ ︷︷ ︸
=1

dx.

(vi)

f̂(εx) =

∫
R

f(εx)e−2πixξ dx

y=εx,dy=εdx
=

1

ε

∫
R

f(y)e(−2πiyξ)/ε dy =
1

ε
f̂(

ξ

ε
).

(vii)

̂f(x+ h) =

∫
R

f(x+ h)e−2πixξ dx

y=x+h,dy=dx
=

∫
R

f(y)e−2πi(y−h)ξ dy = f̂(ξ)e2πihξ.

(viii)

̂f(x)e2πihx =

∫
R

f(x)e2πihxe−2πixξ dx

=

∫
R

f(x)e−2πix(ξ−h) dx = f̂(ξ − h).

�
Example 5.7. If

f(x) = e−πx2
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then its Fourier transform is

f̂(ξ) = e−πξ2

By using complex integration around a rectangle and recalling that e−πz2

is analytic function, we could calculate
∫
R
e−πx2

e−2πixξ dx directly by
using complex integration. We however follow a strategy that does not
require complex integration and observe that f(x) = e−πx2

solves the
differential equation {

f ′ + 2πxf = 0

f(0) = 1.

By taking Fourier transform of f ′ + 2πxf = 0 and using Lemma 5.6,
we obtain

0 = F (f ′ + 2πxf) = f̂ ′ + 2̂πxf = 2πiξf̂ − f̂ ′

i
= i(2πξf̂ + f̂ ′).

And

f̂(0) =

∫
R

e−πx2

dx = 1

because (∫
R

e−πx2

dx
)2

=

∫
R

∫
R

e−πx2

e−πx2

dx dy

=

∫ ∞

0

∫
∂B(0,r)

e−πr2 dr dS

=

∫ ∞

0

2πre−πr2 dr

= −
/∞

0
e−πr2 = 1.

Thus f̂ satisfies the same differential equation and the uniqueness of
such a solution implies the claim.

Theorem 5.8. If f ∈ S(R), then

(i) f̂ ∈ S(R) (similar result does not hold in L1),
(ii)

F−1(f) :=

∫
R

f(ξ)e2πixξ dξ ∈ S(R)

whenever f ∈ S(R).
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Proof. (i) Recall that by Lemma 5.6, f̂ is continuous and for any pair
of integers k, l

F

(
1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

)
=

1

(2πi)k
F

((
d

dx

)k

(−2πix)lf(x)

)
=

1

(2πi)k
(2πiξ)kF

(
(−2πix)lf(x)

)
=

1

(2πi)k
(2πiξ)k

( d

dξ

)l

f̂(ξ)

= ξk
( d

dξ

)l

f̂(ξ).

Therefore

|ξ|k
∣∣∣∣( d

dξ

)l

f̂(ξ)

∣∣∣∣ = ∣∣∣∣ξk( d

dξ

)l

f̂(ξ)

∣∣∣∣
=

∣∣∣∣∣F
(

1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

)∣∣∣∣∣
Lemma 5.6

≤

∣∣∣∣∣
∣∣∣∣∣ 1

(2πi)k

(
d

dx

)k

(−2πix)lf(x)

∣∣∣∣∣
∣∣∣∣∣
1

< ∞

so that f̂ ∈ S(R).
(ii) This follows from the previous by a change of variable.

�
Lemma 5.9. If f, g ∈ S(R), then∫

R

f̂(x)g(x) dx =

∫
R

f(x)ĝ(x) dx

Proof. ∫
R

f̂(y)g(y) dy =

∫
R

∫
R

f(x)e−2πixy dx g(y) dy

Fubini
=

∫
R

f(x)

∫
R

e−2πixyg(y) dy dx

=

∫
R

f(x)ĝ(x) dx. �

Next one of the main results of the section: inversion formula for the
rapidly decreasing functions:

Theorem 5.10 (Fourier inversion). If f ∈ S(R), then

f(x) =

∫
R

f̂(y)e2πixξ dξ,

or with the other notation f(x) = F−1(F (f)) = F−1(f̂).
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Proof. First we show that

f(0) =

∫
R

f̂(y) dy. (5.11)

To see this let ϕ ∈ S(R) and define h(y) = f(−y). Then ϕ̂ ∈ S(R)
and by the convergence result Theorem 3.12 (and the remark after the
theorem)

lim
ε→0

∫
R

h(−y)ϕ̂ε(y) dy = lim
ε→0

(h ∗ ϕ̂ε)(0) = h(0) = f(0).

On the other hand, by Lemma 5.6 and the previous lemma

lim
ε→0

∫
R

h(−y)ϕ̂ε(y) dy = lim
ε→0

∫
R

ĥ(−y)ϕ(εy) dy

h(−y)=f(y)
= lim

ε→0

∫
R

f̂(y)ϕ(εy) dy.

Let ϕ(x) = e−πx2
, then

lim
ε→0

ϕ(εx) = 1,
∣∣∣f̂(y)ϕ(εy)∣∣∣ ≤ ∣∣∣f̂(ξ)∣∣∣ .

It follows that

lim
ε→0

∫
R

f̂(y)ϕ(εy) dy
DOM
=

∫
R

f̂(y) lim
ε→0

ϕ(εy)︸ ︷︷ ︸
=1

dy

proving (5.11). Then defining g(x) := f(x+h) and using from Lemma 5.6

the fact that ĝ(y) = ̂f(x+ h) = f̂(y)e2πhy and observing g(0) = f(h),
the equation (5.11) implies

f(h) =

∫
R

f̂(y)e2πihy dy,

which proves the claim. �
12.10.2010

Corollary 5.12. Let f ∈ S(R). Then by taking consecutive Fourier
transforms, we obtain

f(x)
F→ f̂(ξ)

F→ f(−x)
F→ f̂(−ξ)

F→ f(x).

In particular, F−1(f̂) = F (F (F (f̂))).

Proof. The second arrow:∫
R

f̂(ξ)e−2πixξ dξ
ξ=−ζ
=

∫
R

f̂(−ζ)e2πixζ dζ

=

∫
R

∫
R

f(y)e−2πiy(−ζ) dy e2πixζ dζ

y=−z
=

∫
R

∫
R

f(−z)e−2πizζ dz e2πixζ dζ = f(−x).

The other arrows are easier. �
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Lemma 5.13. If f, g ∈ S(R), then

f̂ ∗ g = f̂ ĝ

Proof. The proof is based on Fubini’s theorem. To this end, observe
that by the proof of Young’s inequality for convolution, Theorem 3.2,
we have∫
R

∫
R

∣∣f(y)g(x− y) e−2πixξ
∣∣ dy dx =

∫
R

|f(y)|
∫
R

|g(x− y)| dx dy < ∞.

Now we can calculate

f̂ ∗ g =

∫
R

∫
R

f(y)g(x− y) dy e−2πixξ dx

Fubini
=

∫
R

f(y)

∫
R

g(x− y)e−2πixξ dx dy

x−y=z, dx=dz
=

∫
R

f(y)

∫
R

g(z)e−2πi(z+y)ξ dz dy

=

∫
R

f(y)e−2πiyξ dy

∫
R

g(z)e−2πizξ dz = f̂ ĝ. �

Next we prove Plancherel’s theorem. The theorem plays a central
role, when extending the definition of the Fourier transform to the
L2-functions. It will also be needed in connection to singular integrals.

Theorem 5.14 (Plancherel). If f ∈ S(R), then

||f ||2 = ||f̂ ||2. (5.15)

Proof. Set g = f̂ . Then ĝ = f . To see this, we first calculate

g = f̂ =

∫
R

f(x)e−2πixξ dx

=

∫
R

f(x)e2πixξ dx

=

∫
R

f(x)e−2πix(−ξ) dx = f̂(−ξ)

and thus by Corollary 5.12

ĝ(x) = F (f̂(−ξ))(x) = f(x).

Utilizing this and Lemma 5.9, we have

||f ||2 =
∫
R

f(x)f(x) dx =

∫
R

f(x)ĝ(x) dx

Lemma 5.9
=

∫
R

f̂(x)g(x) dx =

∫
R

f̂(x)f̂(x) dx = ||f̂ ||2. �
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5.2. On L1. As stated above for f ∈ L1(R), the Fourier transform

f̂(ξ) =
∫
R
f(x)e−2πixξ dx is well defined but it might well be that

f̂ /∈ L1(R).

Question: Then how do we obtain f from f̂ in this case as
∫
R
f̂(ξ)e2πixξ dξ

might not be well defined?
The answer is that we can make sure that the inversion formula

makes sense by multiplying by a bumb function which makes sure that
the integrand gets small enough values far away, and then pass to a
limit.

Theorem 5.16. Let ϕ ∈ L1(R), be bounded and continuous with ϕ̂ ∈
L1(R), ||ϕ̂||1 = 1 . Then

lim
ε→0

∣∣∣∣∣∣∣∣∫
R

f̂(ξ)e2πixξϕ(−εξ) dξ − f(x)

∣∣∣∣∣∣∣∣
1

= 0.

A suitable ϕ in the theorem above is for example ϕ(x) = e−πx2
, see

Example 5.7.

Proof. First, we show that∫
R

f̂(ξ)e2πixξϕ(−εξ) dξ = (f ∗ ϕ̂ε)(x).

To this end, recall that ϕ̂(−εx) = ϕ̂ε(−ξ) and ̂f(x)e2πihx = f̂(ξ − h)
by Lemma 5.6. Observe that these results hold also for L1 functions.
Since ϕ is bounded also the proof of Lemma 5.9 holds. Thus∫

R

f̂(ξ)e2πixξϕ(−εξ) dξ =

∫
R

∫
R

f(y)e−2πiyξ dy e2πixξϕ(−εξ) dξ

Lemma 5.9
=

∫
R

f(y)

∫
R

(
e2πixξϕ(−εξ)

)
e−2πiyξ dξ dy

=

∫
R

f(y)F
(
e2πixξϕ(−εξ)

)
(y) dy

Lemma 5.6:(vi),(viii)
=

∫
R

f(y) ϕ̂ε(x− y) dy

= (f ∗ ϕ̂ε)(x).

(5.17)

When dealing with convolutions, we showed in Theorem 3.7 that

(f ∗ ϕ̂ε)(x) → f(x) in L1(R). �

If f̂ ∈ L1(R), then the inversion formula f(x) =
∫
R
f̂(ξ)e2πixξ dξ

works as such. This can be seen by adding a condition ϕ(0) = 1
for the bumb function and passing to limit in (5.17) using Lebesgue’s
dominated convergence on the left.
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5.3. On L2.

Theorem 5.18. Let f ∈ L2(Rn), and ϕj ∈ S(R), j = 1, 2, . . . such
that

lim
j→∞

||ϕj − f ||2 = 0.

Then there exists a limit which we denote by f̂ such that

lim
j→∞

||ϕ̂j − f̂ ||2 = 0.

The function f̂ is called a Fourier transform of f ∈ L2(R).

Proof. First of all, there exists a sequence ϕj ∈ S(R), j = 1, 2, . . . such
that

lim
j→∞

||ϕj − f ||2 = 0

because S(R) is dense in L2(R): We have already seen that C0(R)
is dense in L2(R). On the other hand, if f ∈ C0(R) then C∞

0 (R) ∋
f ∗ ϕε → f in L2(R), where ϕε is a standard mollifier, and we see that
C∞

0 (R) is dense in L2(R), which is contained in S(R).
Then by Plancherel’s theorem

||ϕ̂j − ϕ̂k||2 = ||ϕj − ϕk||2 → 0

as j, k → ∞ and thus ϕ̂j, j = 1, 2, . . . is a Cauchy sequence. Since

L2(R) is complete, ϕ̂j converges to a limit, which we denote by f̂ .
Next we show that the limit is independent of the approximating

sequence. Let φj be another sequence such that

φj → f in L2(R)

and let g ∈ L2(R) be the limit

φ̂j → g in L2(R).

Then

0
ϕj , φj → f

= lim
j→0

||φj − ϕj||2
Plancherel

= lim
j→0

||φ̂j − ϕ̂j||2 = ||g − f̂ ||2. �

Similarly we obtain a unique inverse Fourier transform of any L2-
function.

We state separately a result from the previous proof.

Corollary 5.19 (Plancerel in L2). If f ∈ L2(R), then

||f ||2 = ||f̂ ||2.

Proof.

||f ||2 = lim
j→∞

||ϕj||2 = lim
j→∞

||ϕ̂j||2 = ||f̂ ||2.

�
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We also obtain formulas for calculating the Fourier transform and
the inverse Fourier transform for L2-functions. Observe that in the
corollary below, χB(0,R)f ∈ L1(R)∩L2(R) by Hölder’s inequality since∫

B
|f | dx ≤

( ∫
B
|f |2 dx

)1/2
.

Corollary 5.20. If f ∈ L2(R), then

lim
R→∞

∣∣∣∣∣∣∣∣∫
{|x|<R}

f(x)e−2πixξ dx− f̂

∣∣∣∣∣∣∣∣
2

= 0,

and

lim
R→∞

∣∣∣∣∣∣∣∣∫
{|ξ|<R}

f̂(ξ)e2πixξ dξ − f(x)

∣∣∣∣∣∣∣∣
2

= 0.

Proof. Recall that if f ∈ L2(R), then χB(0,R)f → f in L2(R) by
Lebesgue’s monotone/dominated convergence theorem. Let us denote

lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx = lim
R→∞

F (fχB(0,R)).

The convergence F (fχB(0,R)) → f̂ follows from the Plancherel’s theo-
rem, because the right hand side of∣∣∣∣∣∣F (fχB(0,R))− f̂

∣∣∣∣∣∣
2
=

∣∣∣∣fχB(0,R) − f
∣∣∣∣

2

can be made as small as we please by choosing R large enough. The
proof of the inversion formula is similar. �

5.4. On Lp, 1 < p < 2. Fourier transform is a linear operator and
thus for f ∈ Lp(R), 1 < p < 2, we have

f = f1 + f2 = fχ{|f |>λ} + fχ{|f |≤λ} ∈ L1 + L2.

we have f̂ = f̂1 + f̂2 ∈ L∞ + L2 and

lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx,

can also be utilized here. However by a special case of the Riesz-Thorin
interpolation theorem we obtain even better. We omit the proof.

Theorem 5.21 (Riesz-Thorin interpolation). Let T be a linear opera-
tor

T : L1(R) + L2(R) → L∞(R) + L2(R)

such that

||Tf1||∞ ≤ C1 ||f1||1
for every f1 ∈ L1(R), and

||Tf2||2 ≤ C2 ||f2||2 ,
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for every f2 ∈ L2(R). Then

||Tf ||p′ ≤ C
1−2/p′

1 C
2/p′

2 ||f ||p ,
where 1/p+ 1/p′ = 1.

Corollary 5.22 (Hausdorff-Young inequality). If f ∈ Lp(R), 1 ≤ p ≤
2, then f̂ ∈ Lp′(R) and

||f̂ ||p′ ≤ ||f ||p .

Proof. By Lemma 5.6, we have
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

∞
≤ ||f ||1 and by Plancherel’s

theorem
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

2
= ||f ||2. Thus we can use Riesz-Thorin interpolation.

�
Observe however that obtaining f from f̂ by using

f̂(ξ) = lim
R→∞

∫
{|x|<R}

f(x)e−2πixξ dx,

is a nontrivial problem. For example in the case p = 1 the Fourier
transform of χB(0,R) is not in L1 as shown in Example 5.3, it does not
satisfy the assumptions of Theorem 5.16, and thus our results do not
imply the convergence. In higher dimensions there is no, in general,
the convergence in Lp, p ̸= 2, as R → ∞.14.10.2010
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